Tensorflow And Keras Cheatsheet
Published Nov. 27, 2025, 5:22 a.m. by james
TensorFlow & Keras Cheatsheet
1. Basic Imports
import tensorflow as tf from tensorflow import keras from keras import layers
2. Build a Sequential Model
model = keras.Sequential([ layers.Dense(128, activation="relu"), layers.Dense(10, activation="softmax") ])
3. Compile Model
model.compile( optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"] )
4. Train Model
history = model.fit( x_train, y_train, batch_size=32, epochs=10, validation_split=0.2 )
5. Evaluate
model.evaluate(x_test, y_test)
6. Predict
pred = model.predict(x_sample)
7. Save and Load Models
model.save("model.h5")
restored = keras.models.load_model("model.h5")
8. Custom Layer
class MyLayer(layers.Layer):
def __init__(self):
super().__init__()
def call(self, inputs):
return inputs * 2
9. Add Callbacks
checkpoint = keras.callbacks.ModelCheckpoint( "best.h5", save_best_only=True ) model.fit(x, y, callbacks=[checkpoint])
10. TensorFlow Dataset Pipeline
ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.shuffle(1000).batch(32).prefetch(tf.data.AUTOTUNE)
11. GPU Check
print(tf.config.list_physical_devices("GPU"))
12. Common Layers
# Dense layer layers.Dense(64, activation="relu") Convolution layers.Conv2D(32, (3,3), activation="relu") Pooling layers.MaxPooling2D((2,2)) Dropout layers.Dropout(0.5)
13. Optimizers
keras.optimizers.Adam() keras.optimizers.SGD(learning_rate=0.01, momentum=0.9) keras.optimizers.RMSprop()
14. Loss Functions
keras.losses.MSE keras.losses.BinaryCrossentropy() keras.losses.CategoricalCrossentropy()
15. Functional API Example
inputs = keras.Input(shape=(784,)) x = layers.Dense(128, activation="relu")(inputs) x = layers.Dropout(0.3)(x) outputs = layers.Dense(10, activation="softmax")(x) model = keras.Model(inputs, outputs)
16. Transfer Learning
base = keras.applications.ResNet50(
include_top=False,
weights="imagenet",
input_shape=(224,224,3)
)
base.trainable = False # Freeze backbone
model = keras.Sequential([
base,
layers.Flatten(),
layers.Dense(64, activation="relu"),
layers.Dense(10, activation="softmax")
])
17. Export SavedModel
model.save("exported_model")
Similar posts
There are no similar posts yet.comment
There are no comments yet.