Derivation of the Rayleigh Distribution from 2D Normal Variables

Published July 25, 2025, 7:19 p.m. by james

Step 1: Start from 2D Normal Distribution

Let $X \sim \mathcal{N}(0, \sigma^2)$ and $Y \sim \mathcal{N}(0, \sigma^2)$ be independent normal random variables. Define:

$$R = \sqrt{X^2 + Y^2}$$

We want the probability density function (PDF) of $R$.

Step 2: Joint PDF of $X$ and $Y$

The joint PDF is:

$$f_{X,Y}(x,y) = \frac{1}{2\pi \sigma^2} \exp\left( -\frac{x^2 + y^2}{2\sigma^2} \right)$$

Step 3: Convert to Polar Coordinates

Use the transformation:

$x = r\cos\theta,\quad y = r\sin\theta,\quad r \geq 0,\ \theta \in [0, 2\pi)$

The Jacobian determinant is:

$$\left| \frac{\partial(x,y)}{\partial(r,\theta)} \right| = r$$

So the joint PDF in polar coordinates becomes:

$$f_{R,\Theta}(r,\theta) = \frac{1}{2\pi \sigma^2} \exp\left( -\frac{r^2}{2\sigma^2} \right) \cdot r$$

Step 4: Marginal PDF of $R$

Integrate over $\theta$ to get the marginal PDF of $R$:

\[ f_R(r) = \int_0^{2\pi} f_{R,\Theta}(r,\theta)\, d\theta = \frac{r}{2\pi \sigma^2} \exp\left( -\frac{r^2}{2\sigma^2} \right) \cdot \int_0^{2\pi} d\theta \]

\[ f_R(r) = \frac{r}{\sigma^2} \exp\left( -\frac{r^2}{2\sigma^2} \right),\quad r \geq 0 \]

Conclusion

The resulting distribution is the Rayleigh distribution:

\[ \boxed{f_R(r) = \frac{r}{\sigma^2} \exp\left( -\frac{r^2}{2\sigma^2} \right),\quad r \geq 0} \]

Share this post

Similar posts

Proof of the Cauchy-Schwarz Inequality for Probability

comment

There are no comments yet.

Add a new comment